
System Overview

ARES MIXER EXAMPLE

To add more audio I/O and GPIO

No processing, no management

General system structure 1

MIXER (main Bea3x)
CONTROL SURFACE

(combination

of modules)

optional EXTENSIONs (Bea3x used as I/O expansions)

Local audio I/O

Local GPIO

Audio

processing

Management

Controls only (it is a

remote control of a

Bea3x)

No audio or

management

audio I/O only in the

ARES CENTRAL

General system structure 2

MIXER (main Bea3x)
CONTROL SURFACE

(combination

of modules)

Management

LAN

optional EXTENSIONs (Bea3x used as I/O expansions)

Dante LAN

proprietary

Bealinx ring to

other mixers

MADI connections

to extensions

to other mixers

other systems needing

interaction with mixer

NTP server, playout, ….

BEA3X equipment

Modular equipment:

same platform for Matrix, Mixer main unit and I/O expansion

1 CORE BOARD

8 AUDIO SLOT

3 AUX SLOT (GPIO, MC)

BEA3X audio boards
BEA3x- MADI

● up to 4 SFP for MADI I/O

BEA3x- OD16
● 16 AES/EBU OUT (32 mono)

BEA3x- OA16
● 16 ANALOG OUT (8 stereo)

BEA3x- IA16
● 16 ANALOG IN (8 stereo)

BEA3x- DSP
● 48 PROCESSING CHAINS

● 64 BUSes

● 128 MON & TB BUSes

● High Resolution Meters

● Sinus & Noise generators

BEA3x-IOD8
● 8 AES/EBU IN (16 mono)

● 8 AES/EBU OUT (16 mono)

BEA3x- MIC
● 8 MIC IN

BEA3x- CORE
● SYNC Management

● Routing Matrix

● 64 DANTE/RAVENNA I/O (32 stereo)

● 2 x 512 BEALINX I/O

BEA3x-DANT
● up to 2 AoIP Modules

● up to 128 DANTE/RAVENNA I/O

(64 stereo)

GPIO
● 12 insulated GPI

● 12 clean contact GPO

GPO
● 24 clean contact GPO

MC
● 2 BEALINX Media Converter

(Copper - Fiber)

each GPI can accept an

external voltage or be

self-biased to read an

external clean contact

BEA3X aux boards

Ares software

HARDWARE

BEA3X

CORE and slots

SOFTWARE

(Linux based)

Running in the

BEA3X BRAIN board

processor

HARDWARE

+

SOFTWARE

(Windows

based GUI)
Python scripts

can run both on

the BEA3X and

on external

devices

Ares software

BEA3X module takes care of low level HW control

Ares software

Mixer structure user defined for each machine with

dedicated configuration software

Ares software structure

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

○ Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

Logical input is the “input” that can be loaded on the fader

it carries inside:

● name (and short name and user label)

● physical input(s) to use (2 sets: primary and secondary)

● processing chain settings

● assignment to buses settings

● …

Multiple logical inputs can use the same physical

to select the input to load

on the desk the logical

input list will be browsed

with a customized

categories tree

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

○ Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

GAIN +

input mtx (M-LR-RL-LL-

RR)

Stereo image settings

Equalizer 6 bands parametric

Dynamic processor (Expander/Gate +

Compressor + Limiter)

Deesser

Insert send&return

Fader with pre-fader and post-fader meters

Output point to create “PreFader” Buses

Output points for partially processed output

block presence and

order is customizable

for each logical input

Delay

Fixed position for digital gain and

input matrix (Mono, Stereo, Stereo

inversion, Left only

the DSP will be configured

correctly each time an

input is loaded on the desk

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

○ Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

A DSP board can generate 64 busses,

for each one the type can be defined as:

● PGM

● REC

● PFL

● N-X (“mix-minus”)

● AUX

● GROUP

“VCA” and “INPUT GROUPs” are also available

For each type any number of bus is available

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

○ Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

A Logical Monitoria is a monitoring system composed by:

● signal selection (up to 16 user assignable sources from

which is possible to pick a primary and a secondary source)

● association with PFL bus

● association with Talkback bus

● many Monitor Buses

Each Monitor Bus can be configured to act in a proper way on:

● signal selection

● PFL active

● incoming TB

● specified inputs are onair

● outgoing TB

and it is possible to modify the PFL behaviour with a dedicated key (to split or swap buses)

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

○ Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

A talkback bus can be created and added to logical buses

and logical monitoria to enable them to receive talkbacks

Each talkback destination must

have an associated talkback bus

The action to be done when

receiving the talkback is

configurable.

Logical Mixer available blocks:

● Logical Inputs

● Processing chains

● Summing Buses

● Logical Monitoria

● Logical Monitor

Buses

● Talkback Buses

● Logical Outputs

A Logical Output is the “output” where you can connect a

signal to have it physically available outside the Bea3x

It defines the association between logical and physical

Better not to have different logical outputs with

same physical to avoid conflicts

Many types of logical signal assignment (routing)

are possible

Ares routing

Different types of routing:

Default routing

Patch routing

Output routing

Group routing

Anything can be routed to a Logical Out:

● input

● buses

● monitor buses

● output (it will make a copy)

defined in the CFG

software and activated

when no other signal

routed to that out

permanently stored

and reactivated at boot

stored in the snapshot,

activated when a

snapshot is loaded

defined in the CFG,

activated with buttons

Not audio only: Logical automation module

● User defined automation inputs (Opto in, logical input status, mixer status,

buttons, scalars, leds, incoming network messages, ….)

● User defined functions (python code based, with automatic generation for

simple boolean operations)

● User defined outputs (relay, operations on presentation controls, network

messages send, …) with optional Converters to adjust data type

“MIC ON AIR”

MIC LIGHT

RELAY

UDP COMMAND

TO VISUAL RADIO

OTHER COMMAND

TO MIXER or

EXTERNAL DEVICE

Fully customizable surface

with dedicated GUI to set

the association between

physical controls and

“presentation objects”,

colors and all parameters

Fully customizable surface: example

nothing
assignment to PGM1

assignment to REC1

select the

channel on

the panel

talkback
(if available)

channel

ON-OFF

PFL

function selected by

central module keys

all TB OFF generic Buttons

(doing nothing)
enc. to mic gain

enc. to dig. gain

enc. to pan/bal

enc. to associated mix-

minus master

open the buses

page on panel

meters pre-post fader
enc. to mix-minus:
●Codec1

●DanteCodec1

●Telephone1

●DanteTelephone1

input group ON/OFF

nothing

direct talkback to:
●Studio Monitoria

●All Telephones

●All Codecs

●All
monitoria

selection for

monitor buttons

below

source selection
(for each monitoria, the real content

is visible on the panel pc)

open the buses

page on panel

all PFL OFF
split LR on PFL

(control room loudspeakers only)

controls for

loudspeaker buses of

selected monitoria

Level and mute controls for monitor buses
of selected monitoria

advanced PYTHON interaction

In addition to Automation

module, special python

scripts can be written

and can be used to add

new functions if required

Everything can be

accessed with Python both

from inside the Bea3x or

from external devices

Centralized System Management Software

Running on an external Linux server to control a
complex installation with several mixers through
any web browser

● Log collection and browsing

● Machines status monitoring

● Connections monitoring

● Audio metering

● Configurations management

● Sw versions management

Case study: RDS main network (Rome + Milan)

Case study: RDS Area Radios
Multiple studios in 2 cities to

multiple radios in different areas

Antenna Management System

Integrated in the Matrix / Mixers

with management of multiple radios and multiple studios

Matrix panel View

PC software view

(customizable)

ARES console

central panel view

(customizable)

Case Study: RDS customized services

● A dedicated service to provide data

about the channels onair to the Visual

Radio automation on an external server

● Telegram notifications

about system status

RDS Studio Edit1

RDS Studio Edit1

RDS Auditorium

RDS Studio DSR

RDS Studio EDIT2

RAI (Cosenza)

Radio Subasio

Thank You

